Biomaterials and Bone Regeneration

Smart Solutions for Worst Case Scenarios

line

Bone has a remarkable regeneration potential. Thus, when bone fractures due to e.g. accidents, usually bone repairs itself. However, during ageing and disease, this potential is markedly reduced, requiring the need for biomaterials to enhance this process. The material that is brought in is expected to mimic bone function and integrate into a living organism.

In this research field, we study the potential of extracellular matrix components, such as glycosaminoglycans (GAG) to accelerate bone regeneration. Since GAGs are natural components of bone, we assume a high biocompatibility that can be used to increase bone healing without adverse effects. Over the last 3 years, we have shown that highly sulfated hyaluronan-based GAG can bind and neutralize sclerostin, an important brake signal for bone formation. We now assess whether GAGs are able to inactivate other negative regulators of bone repair. We test these biomaterials in rodent fracture and bone healing models. Our aim is to develop smart biomaterials that enhance bone regeneration, even under compromised conditions.

Principal Investigators

line
Juliane Saalbach Hirsch

Juliane Salbach-Hirsch, PhD

«Research is going up all alleys to see if they are blind.»

Ekaterina Balaian, MD

Christine Hofbauer, MD

Stefan Rammelt, Technische Universität Dresden
Matthias Schnabelrauch, INNOVENT e. V. Jena
María Teresa Pisabarro, BIOTEC, Technische Universität Dresden
Vera Hintze, Technische Universität Dresden
Jörg Rademann, Freie Universität Berlin
Thomas Oberbach, Mathys Orthopädie GmbH, Mörsdorf

Picke AK, Salbach-Hirsch J, Hintze V, Rother S, Rauner M, Kascholke C, Möller S, Bernhardt R, Rammelt S, Pisabarro MT, Ruiz-Gómez G, Schnabelrauch M, Schulz-Siegmund M, Hacker MC, Scharnweber D, Hofbauer C, Hofbauer LC. Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function. Biomaterials. 2016;96:11-23.

Scharnweber D, Hübner L, Rother S, Hempel U, Anderegg U, Samsonov SA, Pisabarro MT, Hofbauer L, Schnabelrauch M, Franz S, Simon J, Hintze V. Glycosaminoglycan derivatives: promising candidates for the design of functional biomaterials. J Mater Sci Mater Med. 2015;26:232.

Salbach-Hirsch J, Samsonov SA, Hintze V, Hofbauer C, Picke AK, Rauner M, Gehrcke JP, Moeller S, Schnabelrauch M, Scharnweber D, Pisabarro MT, Hofbauer LC. Structural and functional insights into sclerostin-glycosaminoglycan interactions in bone. Biomaterials. 2015;67:335-45.

Salbach-Hirsch J, Kraemer J, Rauner M, Samsonov SA, Pisabarro MT, Moeller S, Schnabelrauch M, Scharnweber D, Hofbauer LC, Hintze V. The promotion of osteoclastogenesis by sulfated hyaluronan through interference with osteoprotegerin and receptor activator of NF-κB ligand/osteoprotegerin complex formation. Biomaterials. 2013;34:7653-61.

Salbach J, Kliemt S, Rauner M, Rachner TD, Goettsch C, Kalkhof S, von Bergen M, Möller S, Schnabelrauch M, Hintze V, Scharnweber D, Hofbauer LC. The effect of the degree of sulfation of glycosaminoglycans on osteoclast function and signaling pathways. Biomaterials. 2012;33:8418-29.

2018-11-08T12:39:33+00:00